top of page
Publications
  1. S. R. Jathar, M. Kar, V. P. Krishnan and R. R. Pattar. Weighted Divergent Beam Ray Transform: Reconstruction, Unique continuation and Stability. pdf

  2. S. R. Jathar, M. Kar, V. P. Krishnan and V. A. Sharafutdinov. Normal operators for momentum ray transforms, II: Saint Venant operator. pdf

  3. M. Kar and M. Sini. Electromagnetic waves generated by a dielectric moving at a constant speed. pdf

  4. S. R. Jathar, M. Kar, and J. Railo. Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms. Inverse Problems, 41(1):015006, (2025). pdf

  5. S. R. Jathar, M. Kar, V. P. Krishnan and V. A. Sharafutdinov. Normal operators for momentum ray transforms, I: The Inversion formula. J. Fourier Anal. Appl. 30, 58 (2024). pdf

  6. M. Kar, Y.-H. Lin, and P. Zimmermann. Determining coefficients for a fractional p-Laplace equation from exterior measurements. Journal of Differential Equations 406 (2024) 338–365. pdf

  7. S. R. Jathar, M. Kar, and J. Railo. Broken ray transform for twisted geodesics on surfaces with a reflecting obstacle. The Journal of Geometric Analysis (2024), Volume 34, article number 212. pdf

  8. G. Hwang and M. Kar. Reconstructing unknown inclusions for the biharmonic equation. J. Math. Anal. Appl. 530 (2024) 127745. pdf

  9. M. Kar, J. Railo and P. Zimmermann. The fractional p-biharmonic systems: optimal Poincaré constants, unique continuation and inverse problems. Calc. Var. Partial Differential Equations 62 (2023), no. 4, 36 pp. pdf

  10. Cătălin I. Cârstea and M. Kar. Recovery of coefficients for a weighted p-Laplacian perturbed by a linear second order term. Inverse Problems 37 (2021), no. 1, 22 pp. pdf

  11. M. Kar and J-N Wang. Size estimates for the weighted p-Laplace equation with one measurement.  Discrete Contin. Dyn. Syst. Ser. B 26 (2021), no. 4, 2011–2024. (DCDS-B)pdf

  12. T. Brander, B. Harrach, M. Kar and M. Salo. Monotonicity and enclosure methods for the p-Laplace equation.  SIAM J. Appl. Math. 78 (2018), no. 2, 742–758. pdf

  13. T. Brander, J. Ilmavirta, and M. Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. pdf

  14. C. Guo and M. Kar. Quantitative uniqueness estimates for p-Laplace type equations in the plane. Nonlinear Anal. 143 (2016), 19–44. pdf

  15. C. Guo, M. Kar and M. Salo. Inverse problems for p-Laplace type equations under monotonicity assumptions. Rend. Istit. Mat. Univ. Trieste 48 (2016), 79–99. (Special issue in honor of Prof. Giovanni Alessandrini on the occasion of his 60th birthday). pdf

  16. M. Kar and M. Sini. An H^{s,p}(\curl;\Omega) estimate for the Maxwell system. Math. Ann., 364(1-2):559-587, 2016. pdf

  17. T. Brander, M. Kar and M. Salo. Enclosure method for the p-Laplace equation. Inverse problems. 31(4):045001, 2015. pdf

  18. M. Kar and M. Sini. On the inverse elastic scattering by interfaces using one type of scattered waves. J. Elasticity. 118(1):15-38, 2015. pdf

  19. M. Kar and M. Sini. Reconstruction of interfaces from the Elastic far field measurements using CGO solutions. SIAM J. Math. Anal., 46(4), 2650-2691, 2014. pdf

  20. M. Kar and M. Sini. Reconstruction of interfaces using CGO solutions for the Maxwell equations. J. Inverse Ill-Posed Probl. 22 (2014), no. 2, 169-208. pdf

  21. M. Kar and M. Sini. Reconstructing obstacles by the enclosure method using the far field measurements in one step. Applicable Analysis, 93(6):1327-1336, 2014. pdf

bottom of page